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Winding number and non-BPS bound states of walls in nonlinear sigma models

Norisuke Sakai* and Ryo Sugisaka†

Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
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Nonsupersymmetric multiwall configurations are generically unstable. It is proposed that stabilization in
compact space can be achieved by introducing a winding number into the model. A Bogomol’nyi-Prasad-
Sommerfield-~BPS!-like bound is studied for the energy of a configuration with nonvanishing winding num-
ber. The winding number is implemented in anN51 supersymmetric nonlinear sigma model with two chiral
scalar fields, and bound states of BPS and anti-BPS walls are found to exist in noncompact spaces. Even in the
compactified spaceS1, this nontrivial bound state persists above a critical radius of the compact dimension.
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I. INTRODUCTION

Extended objects such as walls have attracted much a
tion recently, mainly because of the possibility of a ‘‘bra
world’’ scenario where our four-dimensional spacetime is
alized on a wall embedded in a higher dimensional space
@1,2#. Supersymmetry~SUSY! is one of the most promising
ideas to solve the hierarchy problem in unified theories@3#.
Walls preserving half of the original SUSY@4–6# are called
1/2 Bogomol’nyi-Prasad-Sommerfield~BPS! states @7#.
Junctions preserving 1/4 of the SUSY have also been c
structed@8#. An interesting model with a two chiral scala
fields has also been found allowing BPS two-wall config
rations@9# whose properties are studied with a certain ans
@10#. By combining the brane-world scenario with SUSY, w
have previously proposed a simple mechanism of SU
breaking due to the coexistence of BPS and anti-BPS w
@11#. We have also invented another model which allow
non-BPS configuration to be absolutely stable because o
winding number@12#.

Motivated by SUSY field theories in spacetime with d
mensions higher than four@13,14#, walls and junctions have
been studied in nonlinear sigma models with four sup
charges@15#. In order to preserveN51 SUSY in four di-
mensions, only holomorphic field redefinitions are allowe
With the holomorphic field redefinitions, one can transfo
SUSY field theories with minimal kinetic terms~linear sigma
models! into those with nonminimal kinetic terms~nonlinear
sigma models!. The transformations give a model equivale
to the original model as far as local properties in target sp
are relevant. However, new physical effects can arise if
global properties in the target space are different. A typi
global property of that kind is the winding number in targ
space@12,15#. BPS walls in compactified base space ha
been considered, especially in the context of tw
dimensional SUSY theories, and the importance of wind
number has also been noticed previously@16,17#.

A typical model admitting winding number is the sin
Gordon model
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L52
1

2
~]mc!22

1

2
cos2c. ~1.1!

Because of the periodic field variablec5c12p, the topol-
ogy of the field space isS1. When the base space is compa
tified (y5y12pR) to S13R3, we obtain the winding num-
ber p1(S1) of the mappingy→c. If we rewrite the same
sine-Gordon model in terms of the nonperiodic variablef
5sinc,

L52
1

2

~]mf!2

12f2 2
1

2
~12f2!, ~1.2!

it is difficult to recognize the winding number, although th
model should be the same as long as global properties
the winding number are irrelevant. For instance, the sp
trum of fluctuations is identical for the zero winding numb
sector. A similar phenomenon occurs in the case of SU
field theories. If we supersymmetrize the sine-Gordon mo
in four dimensions, we need a complex scalar fieldc5cR
1 ic I . The bosonic part of the Lagrangian reads

L52]mc* ]mc2ucoscu2

52~]mcR!22~]mc I !
22~coscR coshc I !

2

2~sincR sinhc I !
2. ~1.3!

Since the real part is a periodic variablecR5cR12p, the
topology of the field space is now naturally identified asS1

3R. Therefore we can define the winding numberp1(S1) of
the mappingy→cR from the compact base spacey5y
12pR. We have previously found an exact non-BPS so
tion of two walls whose stability is guaranteed by the win
ing number for this model@12#.

The purpose of this paper is to propose a general met
to construct non-BPS configurations by introducing t
winding number and to study the properties of such non-B
wall configurations, especially the possible non-BPS bou
states of walls. We introduce the winding number by co
structing a nonlinear sigma model. This can be achieved b
holomorphic field redefinition transforming the field variab
into an angular variable winding around a target space
nontrivial topology such asS1. We obtain a non-BPS con
figuration consisting of a BPS and an anti-BPS configurat
©2002 The American Physical Society10-1
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by giving half the winding number to each~anti-!BPS con-
figuration. For models with a single chiral scalar field wi
only real parameters, we can establish a BPS-like bou
configurations with nonvanishing winding number consist
of n ~anti-!BPS states have energies larger than or equa
the sum of energies of thesen ~anti-!BPS states. Since
superposition of thesen ~anti-!BPS states becomes a solutio
when these BPS states are far apart, our bound implies
no stable bound state can be formed in this class of mo
with a single chiral scalar field.

Although we do not find exact solutions with nonvanis
ing winding number, we can still construct an ansatz o
non-BPS configuration, which is a superposition of BPS a
anti-BPS solutions in terms of the periodic variable, to giv
nonvanishing winding number. This ansatz is tested in
model with a single chiral scalar field and gives a repuls
between BPS and anti-BPS walls and produces no bo
state in accordance with our BPS-like bound. In contras
similar ansatz for configurations without winding numb
gives an attraction and shows annihilation into the ordin
vacuum.

The model with two chiral scalar fields admits BPS tw
wall configurations with a moduli parameter correspond
to the separation of two walls within the BPS state@9#. This
internal structure of the BPS state offers a new possibility
forming a bound state of BPS and anti-BPS states, wh
stability is guaranteed by the nonvanishing winding numb
We construct an ansatz of four walls comprising two B
walls and another two anti-BPS walls by superposing th
solutions in terms of the periodic variable. We find that t
BPS-like bound allows the possibility of configuration
whose energy is lower than the sum of BPS and anti-B
states. We evaluate the energy density of the configuratio
a function of the moduli and of the distance between B
and anti-BPS states. We find an interesting nontrivial beh
ior of the energy density. We first study configurations
noncompact space in order to find a bound state of BPS
anti-BPS states. For one choice of intermediate vacuum
find an absolute minimum of energy which is lower than t
sum of the BPS and anti-BPS states. Although we us
variational ansatz which is guaranteed to be a solution o
in the limit of infinite separation, the mere existence of t
configurations whose energies are lower than the sum of
BPS and anti-BPS states is sufficient to conclude that
bound state exists. The distance between BPS and anti-
states and the moduli of these states are approximately e
ated using our ansatz. For another choice of intermed
vacuum, we find a local minimum at vanishing separat
between BPS and anti-BPS states. This suggests an uns
bound state at the coincident limit of BPS and anti-B
states. For compact space, we always find a minimum
energy when the BPS and anti-BPS states are equally spa
This is due to a tendency to repel each other, as indicate
the BPS-like bound. For the same reason, we can expect
the bound state that we find in the other choice of interm
diate vacuum may disappear when the radius of the com
dimension is too small. In fact, we find that the absolu
minimum is gradually raised as the radius decreases,
disappears below a critical radius.
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In the next section, a method is given to introduce t
winding number by a holomorphic field redefinition, and
BPS-like bound is derived for models with a single chir
scalar field. In Sec. III, the winding number is introduce
into a model with two chiral scalar fields. The energy
non-BPS multiwall configurations is studied numerically a
a bound state of BPS and anti-BPS states is obtained.

II. WINDING NUMBER IN SUSY NONLINEAR SIGMA
MODELS

A. Introducing the winding number

In order to illustrate our ideas in a simple context, w
consider three-dimensional domain walls in fou
dimensional field theories with four supercharges. A gene
Wess-Zumino model with an arbitrary number of chiral s
perfields F i , a superpotentialW, and a Ka¨hler potential
K(F i ,F* j ) is given by

L5K~F i ,F* j !uu2ū21@W~F i !uu21H.c.#. ~2.1!

We shall denote the scalar component of the superfi
F i(x,u,ū) as f i(x). Let us suppose that we have a wa
configuration which depends only onx25y. If the following
BPS equation is satisfied, two out of the four superchar
are conserved@4–6#:

]f i

]y
5Ki j * ]W* ~f* !

]f* j
. ~2.2!

We call such a configuration a BPS wall. The other tw
supercharges are conserved if the similar equation with
posite sign is satisfied:

]f i

]y
52Ki j * ]W* ~f* !

]f* j
. ~2.3!

We call such a configuration an anti-BPS wall. Since the
walls connect two supersymmetric vacua, we need mod
with two vacua at least. The simplest model has a sin
chiral scalar fieldF with a minimal kinetic term and a cubic
superpotentialW,

L5F†Fuu2ū21F S m2

g
F2

g

3
F3D U

u2

1H.c.G
52

]f

]xm

]f*

]xm2Um2

g
2gf2U2

1fermions. ~2.4!

The BPS Eq.~2.2! and anti-BPS Eq.~2.3! have the solutions

f (wall)~y!5
m

g
tanh@m~y2y0!#, ~2.5!

f (antiwall)~y!52
m

g
tanh@m~y2 ȳ0!#, ~2.6!
0-2
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representing walls located aty0 and ȳ0, respectively. For a
compact spacey5y12pR, we have also found an exac
solution of the wall and antiwall configuration which brea
supersymmetry completely@11#:

f (wall-antiwall)~y!5
m

g

kA2

A11k2
snS A2

A11k2
my,kD , ~2.7!

where sn(u,k) is the Jacobi elliptic function, 0<k<1, and
R5A2A11k2K(k)/(pm), whereK(k) is the complete el-
liptic integral. This non-BPS solution corresponds to a w
located aty50 and an antiwall aty5pR. The small fluc-
tuations around this background exhibit a tachyon co
sponding to wall-antiwall annihilation instability@11#.

A promising idea for stabilizing the non-BPS configur
tion of two walls is to introduce a topological quantum num
ber, typically a winding number, into the model. We give
topology ofS1 to field space so that we can have a notion
winding from a compactified base space which is alsoS1. To
achieve that goal, we make a holomorphic redefinition of
field f into a periodic onec:

f~x!5
m

g
sinc~x!,

F~x,u,ū !5
m

g
sinC~x,u,ū !. ~2.8!

In terms of the periodic variablec, the model~2.4! becomes

L5
m2

g2 sinC† sinCU
u2ū2

1
m3

g2 S sinC2
1

3
sin3C D

u2

1H.c.

52
m2

g2 Ucosc
]c

]xmU2

2Um2

g
cos2cU2

1fermions. ~2.9!

The field space now acquires the topology ofS13R. Then
the SUSY vacua occur atc5p(n11/2) with the periodicity
c5c12p. The BPS equation~2.2! becomes

dc

dy
5cosc. ~2.10!

The BPS solution~2.5! is mapped into a solution of thi
transformed BPS Eq.~2.10!:

c (BPS)~y!5arcsin$tanh@m~y2y0!#% ~2.11!

connecting the SUSY vacuumc52p/2 at y52` to c
5p/2 at y5`. The solution of the anti-BPS equation co
necting the SUSY vacuumc5p/2 aty52` to c53p/2 at
y5` is given by

c (antiBPS)~y!5arcsin$tanh@m~y2 ȳ0!#%1p. ~2.12!

Since the value of the fieldc at the right end of the BPS wa
~2.11! is the same as at the left end of the anti-BPS w
04501
ll

-

f

e

ll

~2.12!, there is a possibility of connecting these two wa
solutions located aty0, ȳ0. Such a field configuration shoul
have winding number 1.

In fact we have found previously that a similar mod
with the minimal kinetic term provides the same BPS eq
tion ~2.10! and that there is an exact solution for the no
BPS configuration of two walls for compactified spacey
@12#. The configuration was found to wind around the fie
spacec once and is topologically stable.1

In our model with the periodic variable~2.9! we have an
exact solution for compactified space:

c (wall-antiwall)~y!5arcsinFm

g

kA2

A11k2
snS A2

A11k2
my,kD G ,

~2.13!

obtained by transforming the non-BPS solution~2.7! to our
periodic variablec. Since 0,kA2/A11k2,1 for 0,k,1,
the configuration has no winding number and represents
wall-antiwall configuration as in our original model withou
periodic variable@11#. One also finds that the small fluctua
tion around the background has exactly the same spect
including the tachyon instability. This is consistent with th
fact that the ordinary vacuum is the minimum energy co
figuration in the vanishing winding number sector.

B. BPS-like bound for winding field configuration

We are interested in the field configuration with a nonv
nishing winding number. Let us consider a BPS-like bou
for the energy of the configuration with a nonvanishi
winding number. Let us first consider the model~2.9! as the
simplest model for illustration. If there is a field configur
tion with unit winding number,c should rotate by 2p asy
increases by 2pR. The noncompact space is obtained by t
limit R→`. Let us call the pointy1 wherec52p/2 andy2
where c5p/2 and assumey1,y2 as illustrated in Fig. 1.
The energy of a configuration with one winding number
given in one periodicity domain by

1Since the 1/2 BPS solution is real, we can reinterpret the inve

of the Kähler metricKi j * as a part of the derivative of a superp

tential Ki j * ]W/]f* j5]W̃/]f* j , as noted in@15#.

FIG. 1. The profile of the field configuration ofc with unit
winding number. The dotted linesc52p/2 andc53p/2 are iden-
tified.
0-3
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FIG. 2. The profile ofc with
unit winding number; the superpo
sition of the BPS wall and the
anti-BPS wall atma510 ~a! and
ma50 ~b!.
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E5E
y1

y112pR

dyFm2

g2Ucosc
]c

]yU
2

1Um2

g
cos2cU2G

5E
y1

y2
dyFUmg cosc

]c

]y
2

m2

g
cos2cU2

1
m3

g2

d

dy S sinc

2
1

3
sin3c D G1E

y2

y112pR

dyFUmg cosc
]c

]y
1

m2

g
cos2cU2

2
m3

g2

d

dy S sinc2
1

3
sin3c D G

>Fm3

g2 S sinc2
1

3
sin3c D G

y1

y2

2Fm3

g2 S sinc2
1

3
sin3c D G

y2

y112pR

52EBPS, ~2.14!

whereEBPS is the energy of the single BPS or anti-BPS wa
Therefore any configuration with unit winding number h
energy larger than or equal to the sum of the energies
BPS wall and an anti-BPS wall. Since this superposition
the BPS and anti-BPS states becomes a solution of the e
tion of motion as their separation goes to infinity, we fi
that the BPS state and the anti-BPS state in the unit wind
number sector always repel each other when they are s
ciently far apart at least. Whether there is any local minim
for finite separation or not is the remaining question wh
we will address in the next subsection.

This BPS-like bound can also be generalized to ot
models of a single chiral scalar field using an arbitrary
perpotential with real parameters. This may be achieve
the parameters of the model can be made real by phas
tations of the fields. Then we can assume that the field c
figuration is real. Let us suppose that there are two vacu
c1 andc2 of the periodic variablec5c12p. Without loss
of generality we can assumeW(c1),W(c2). If there is a
field configuration with a single winding number which tak
the valuec1 at y1 andc2 at y2, we can apply a BPS boun
for the intervaly1,y,y2 and an anti-BPS bound for th
interval y2,y,y112pR as in Eq.~2.14!. Thus we obtain
that the energy of the field configuration with a single win
ing number is bounded by 2EBPS52@W(c2)2W(c1)#.
Similarly, we can easily find that winding field configura
04501
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tions consisting ofn ~anti-!BPS states in one periodicity do
main 0<y<2pR have energy larger than or equal to th
sum of these BPS states.

C. Repulsion between BPS and anti-BPS walls

Since we cannot find exact solutions in the sector w
nonvanishing winding number, we shall use an approxim
evaluation of the possible configurations inspired by the B
~2.11! and anti-BPS~2.12! solutions. This is at least suffi
cient to give an upper bound of the energy of the poss
minimum energy solution from the viewpoint of a variation
approach.

Let us consider a superposition of the BPS wall solut
~2.11! centered aty50 and the anti-BPS solution~2.12! cen-
tered aty5a,

c~y!5arcsin@ tanh~my!#1arcsin$tanh@m~y2a!#%1
p

2
~2.15!

connecting the SUSY vacuumc52p/2 at y52` to c
53p/2 at y5`, and having unit winding number. Althoug
this is not a static solution of the equation of motion for fin
separationa, it reduces to a solution in the limita→`. De-
fining a dimensionless coordinate

u[my, ua[ma, ~2.16!

the energy of this configuration is found to be

E5E
2`

`

dyFm2

g2Ucosc
]c

]yU
2

1Um2

g
cos2cU2G

5
m3

g2 E
2`

`

duF S tanhu

cosh~u2ua!
1

tanh~u2ua!

coshu D 2

3S 1

coshu
1

1

cosh~u2ua! D
2

1S tanhu

cosh~u2ua!
1

tanh~u2ua!

coshu D 4G . ~2.17!

One should note that the field~2.15! as well as its derivative
are nonsingular in the entire region ofy. On the other hand
the energy density in the integrand of Eq.~2.17! has contri-
butions from the kinetic term~first term! and the potential
term ~second term!, both of which have powers of cosc
0-4
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vanishing at vacua. As a consequence, the energy densit
the two-wall configuration in Eq.~2.17! has a zero aty
5a/2 for any values ofa>0 and exhibits two separated
peaks for two walls. This is true even fora50 where the
field c itself shows no sharp separation of two walls a
shown in Fig. 2~b!.

A typical field configuration atua5ma510 in Fig. 2a
showsc winding once to form two walls. Even at the coin
cident limit a→0 of two walls, the field configuration is
nontrivial as shown in Fig. 2b. The energy as a function
the wall separationa is shown in Fig. 3, where the param
eters are set tom51,g51. We see that the energy is alway
larger than the sum of the isolated wall and antiwall a
reduces to the sum ata→` in accordance with our BPS-like
bound. Therefore we find that a BPS wall and an anti-BP
wall repel each other and have no stable bound state in
unit winding number sector.

To examine how well our ansatz carries the correct beh
ior of the lowest energy configuration, we also compute t
energy of the corresponding ansatz in the vanishing wind
number sector:

cno winding~y!5arcsin@ tanh~my!#

2arcsin$tanh@m~y2a!#%2
p

2
,

~2.18!

FIG. 3. The energy ofc as a function of the wall separationa
(m51,g51).
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Eno winding5
m3

g2 E
2`

`

duF S tanhu

cosh~u2ua!

2
tanh~u2ua!

coshu D 2S 1

coshu
2

1

cosh~u2ua! D
2

1S tanhu

cosh~u2ua!
2

tanh~u2ua!

coshu D 4G . ~2.19!

A typical field configuration atua510 in Fig. 4a shows n
winding to be compared with Fig. 2a. At the coincident lim
a→0 of two walls, the fieldc becomes constant as shown
Fig. 4b and reduces to the ordinary vacuumc52p/2 in
contrast to the unit winding number case in Fig. 2b. In Fig
we show the energy of the two-wall configuration in t
vanishing winding number sector as a function of the w
separationa. It reduces to the sum of the BPS energies
two walls at a→6` and vanishes at the coincident po
a50. This clearly shows that the wall-antiwall configurati
in the zero winding number sector is unstable and annihil
into the vacuum.

III. WINDING NUMBER IN A MODEL WITH TWO
FIELDS

A. Model with two fields

In order to explore the nontrivial behavior of the windi
number configuration, we consider the next simplest po
bility, models with two chiral scalar fields. It has been fou
that the model with minimal kinetic terms for chiral sca
fields F and X with the following superpotentialW has an
integral of motion@9#:

W~F,X!5
m2

g
F2

g

3
F32

g

4
FX2, m,g.0. ~3.1!

This model is the simplest modification of our model in E
~2.4! in the previous section to allow four degenerate SU
vacua at (f,x)5(6m/g,0),(0,62m/g). There are BPS
wall solutions connecting the vacuum (2m/g,0) to (0,
62m/g) and solutions (0,62m/g) to (m/g,0). Since both
of them turn out to conserve the same supercharge
smooth connection of these wall solutions located far a
should be a solution of the same BPS equation. A remark
property of this model is that it admits a BPS solution of t
walls connecting (f,x)5(2m/g,0) to (m/g,0):
S

FIG. 4. The profile of
cno winding without winding num-
ber; the superposition of the BP
wall and the anti-BPS wall atma
510 ~a! andma50 ~b!.
010-5
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NORISUKE SAKAI AND RYO SUGISAKA PHYSICAL REVIEW D66, 045010 ~2002!
f5
m

g
f ~u!, f ~u!5

sinhu

coshu1t
,

x56
m

g
h~u!, h~u!52A t

coshu1t
, ~3.2!

where 0<t is a moduli parameter@9,10#. This configuration
can be interpreted as a smooth connection of the above
BPS walls connecting between (2m/g,0) and (0,62m/g)
and between (0,62m/g) to (m/g,0). They are centered a
y50. If the moduli parametert is larger than 1, these two
walls are separated by a distancey5 t̂ where cosh(mt̂)5t.
The case with 0<t,1 corresponds to two walls compress
into each other so that the walls merge together comple

We introduce the concept of winding number by making
holomorphic change of variable~2.8! from f to a periodic
one c5arcsin(gf/m). The bosonic part of our model with
the periodic variable is then given by

Lbosonic52
m2

g2 Ucosc
]c

]xmU2

2U ]x

]xmU2

2Um2

g
cos2c2

g

4
x2U2

2U2 m

2
x sincU2

. ~3.3!

The vacua of this model are at

~c,x!5S p

2
1np,0D ,

S np,
2m

g D , S np,2
2m

g D , ~3.4!

with integer2`,n,`. The BPS equations are given by

FIG. 5. The energy ofcno winding as a function of the wall sepa
ration a (m51,g51).
04501
o

ly.

cosc
]c

]u
5cos2c* 2

g2

4m2 x* 2,

]x

]u
52

1

2
sinc* x* , u[my. ~3.5!

One can obtain from Eq.~3.2! a BPS two-wall solution
which connects (c,x)5(2p/2,0) at y52` to (c,x)
5(p/2,0) aty5`:

cBPS5arcsin@ f ~u!#, xBPS
6 56

m

g
h~u! ~3.6!

where the functionsf (u),h(u) are defined in Eq.~3.2!. The
6 of x6 corresponds to the sign of the vacuum (c,x)5(0,
62m/g) in the intermediate region. Another two-wall con
figuration connecting (c,x)5(p/2,0) at y52` to (c,x)
5(3p/2,0) at y5` is given as a solution of the anti-BP
equation preserving the opposite combination of sup
charges:

canti-BPS5arcsin@ f ~u!#1p, xanti-BPS
6 56

m

g
h~u!.

~3.7!

These solutions are centered aty50 and have a modulit.
We can construct an ansatz for the configuration with u

winding number by superposing the BPS two-wall soluti
with moduli t1 centered aty50 and the anti-BPS two-wal
solution with the modulit2 centered aty5a:

FIG. 6. The profile of the field configuration ofcnon-BPS.
FIG. 7. The profile of the field
configuration ofxnon-BPS

6 .
0-6
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cnon-BPS5arcsinS sinhu

coshu1t1
D1arcsinS sinh~u2ua!

cosh~u2ua!1t2
D

1
p

2
,

xnon-BPS
6 5

2m

g SA t1

coshu1t1
6A t2

cosh~u2ua!1t2
D ,

~3.8!

where the sign6 for the fieldx6 indicates the same (1) or
opposite (2) sign of the vacuum in the intermediate regio
aroundy50 and aroundy5a. A typical field configuration
(c,x1) is illustrated in Figs. 6 and 7a. We have shown t
distance t̂ i[arccosh(t i)/m between walls within the BPS
state (i 51) and the anti-BPS state (i 52). For comparison,
the field configuration (c,x2) for the vacuum (c,x)5(0,
22m/g) in the intermediate region is illustrated in Figs.
and 7b.

B. BPS-like bound for two-field model

Let us first examine what sort of BPS-like bound can
obtained in the case of two fields. The energy in the o
periodicity domain is given by

E5E
0

2pR

dyFUmg cosc
dc

dyU
2

1Udx

dyU
2

1Um2

g
cos2c2

g

4
x2U2

1U2 m

2
x sincU2G . ~3.9!

FIG. 8. The energy of the field configuration of (c,x1) as a
function of a at t50.2 (m51,g51).

FIG. 9. The energy of (c,x1) as a function oft12t2 at (t1

1t2)/250.2 andma54.73 (m51,g51).
04501
e
-

As in the single field model, we assume that the perio
field c takes values2p/2 at y1 andp/2 at y2. We find

E5E
y1

y2
dyFUmg cosc

dc

dy
2

m2

g
cos2c1

g

4
x2U2

1Udx

dy
1

m

2
x sincU2

1
dW~c,x!

dy G
1E

y2

y112pR

dyFUmg cosc
]c

]y
1

m2

g
cos2c2

g

4
x2U2

1Udx

dy
2

m

2
x sincU2

2
dW~c,x!

dy G . ~3.10!

In the case of the single field model, one can specify
value of the superpotential in terms of the value of the fi
c. Combined with the requirement of nonvanishing windi
number and the continuity of the real functionc(y), we are
sure that the superpotential has to reach the vacuum v
W(c5p/2) before returning back to the original valu
W(c52p/2) as dictated by the periodicity of the superp
tential in our model. This is the origin of the BPS-like boun
for the single field model. In the case of two fields, howev
the above bound reads

E>2FWS c~y2!5
p

2
,x~y2! D2WS c~y1!5

2p

2
,x~y1! D G

52F S 2m3

3g2 2
m

4
x2~y2! D2S 2

2m3

3g2 1
m

4
x2~y1! D G

52EBPS2
m

2
@x2~y2!1x2~y1!#. ~3.11!

FIG. 10. The energy of the field configuration of (c,x2) as a
function of a at t50.423 (m51,g51).

TABLE I. Fractional difference (E52E3)/E3 between energies
in compact space in approximations with five wallsE5 and three
walls E3 for 2mpR510,20,40. Difference is largest for antiwa
placed at the center of periodicitya5pR, and smallest at coinci-
dent limit a50,2pR.

2mpR 10 20 40

a50,2pR 9.1831025 4.1231029 !1029

a5pR 1.0331022 6.8131025 3.0931029
0-7
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FIG. 11. The profile of the field configuration of (c,x1) in three-wall approximation at 2mpR540 andt50.2 (m51,g51).
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Nonvanishingx(y1) andx(y2) make this bound lower than
twice the BPS energy. In the case of two fields, it is n
guaranteed for two fields to take the particular value sp
fied by the vacuum at the same time. Consequently, the
perpotential need not reach the value at the vacuum be
returning back to its original value. Since we have just ch
sen particular pointsy1 ,y2 to divide the integration region in
order to evaluate the BPS or anti-BPS bound, it is poss
that we can have better bounds by choosing other point
division. However, it does not seem to be possible to cho
such a point in general situations. Therefore we just concl
that the energy of the winding configuration need not
larger than the sum of the BPS and anti-BPS states. T
result suggests that there is a possibility for a non-B
bound state of walls in the case of the two-wall model.

C. Non-BPS multiwalls in the noncompact space

Here we present the energy~3.9! of the non-BPS configu-
ration of four walls with unit winding number~3.8!. To avoid
too many parameters, we will use the same moduli par
eters for both BPS and anti-BPS states,t15t2[t, except as
stated otherwise.

For the case ofx6 with the same sign of the fieldx for
BPS and anti-BPS walls, we show the energy as a functio
separationa between BPS and anti-BPS walls for fixe
moduli t in Fig. 8. A typical field configuration can be ob
tained by lettingt̂15 t̂2 in Figs. 6 and 7a. We observe th
following.

~1! There exist configurations which have energies low
than the sum of BPS and anti-BPS states, in contrast to
single field case. Although we have only a limited ansatz
04501
t
i-
u-
re
-

le
of
e
e

e
is
S

-

of

r
he
f

field configurations inspired by physical considerations, t
fact clearly shows that the BPS and anti-BPS states infini
far apart is not the lowest energy state in the nonvanish
winding number sector.

~2! Among these configurations, we find the minimu
energy configuration with a separationa'4.73/m of BPS
and anti-BPS states and the modulit'0.200 which is shown
in Fig. 8. Thus we find an approximate evaluation of t
minimum energy configuration for the unit winding numb
sector.

~3! We have also examined the energy as a function of
differencet12t2 between the moduli parameters of the BP
statet1 and the anti-BPS statet2 as shown in Fig. 9. It shows
clearly that the configuration achieves the minimum ene
for t15t2.

~4! Therefore we find that there exists a non-BPS bou
state of walls whose approximate configuration is given
two BPS and anti-BPS walls with moduli parametert15t2
'0.200 which are separated bya'4.73/m.

For the case with the opposite sign of the fieldsx for BPS
and anti-BPS walls, we show the energy as a function
separationa between BPS and anti-BPS walls for fixe
moduli t'0.423 in Fig. 10. A typical field configuration ca
be obtained by lettingt̂15 t̂2 in Figs. 6 and 7b. We observ
the following.

~1! We find that energy is always higher than the sum
the BPS and anti-BPS states.

~2! There exists a local minimum of energy at zero se
rationa50 between BPS and anti-BPS states for the mod
parametert,3.705. The lowest value of this local minimum
occurs at the modulit'0.423 which is shown in Fig. 10.
FIG. 12. The energy of (c,x1) as a function ofma at t50.2 in the case of 2mpR540 ~a!, 2mpR520 ~b!, and 2mpR510 ~c! (m
51,g51).
0-8
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FIG. 13. The profile of the field configuration of (c,x2) in three-wall approximation at 2mpR540 andt50.423.
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D. Non-BPS multiwalls in compactified space

It is interesting to examine if the above non-BPS bou
state of walls persists when the space is compactified onS1,
since one expects a repulsion from the other walls locate
2pR, which is the periodicity of the base spacey5y
12pR.

When the space is compactified, the BPS states are pl
at y52npR and the anti-BPS walls aty52npR1a peri-
odically. Then we have the ansatz

cnon-BPS5 (
n52`

`

$arcsin@ f ~u22nu0!#

1arcsin@ f ~u2ua22nu0!#1p%2
p

2
,

xnon-BPS
6 5 (

n52`

` Fm

g
@h~u22nu0!6h~u2ua22nu0!#G ,

~3.12!

whereu[my,ua[ma, andu0[mpR.
In the one-periodicity domaina2pR,y,a1pR, only

nearby walls are important. Three-wall~placed at y
50, a,2pR) and five-wall ~placed at y5a22pR,
0,a,2pR,a12pR) approximations of the energy in the in
terval a2pR,y,a1pR are compared in the case of th
moduli parametert50. We find excellent agreement be
tween three-wall and five-wall approximations. We show
fractional difference (E52E3)/E3 between the energies i
compact space in approximations with five wallsE5 and
three wallsE3 in Table I. Therefore we choose to use t
three-wall approximation in the following. The energy de
04501
d

at

ed

e

-

sity in Eq. ~3.9! can be evaluated in the three-wall approx
mation by using f i5 f (ui),hi5h(ui),i 51,2,3, and u1
5u,u25u2ua ,u35u22mpR:

sinc52 f 1A~12 f 2
2!~12 f 3

2!2 f 2A~12 f 3
2!~12 f 1

2!

2 f 3A~12 f 1
2!~12 f 2

2!1 f 1f 2f 3 ,

cosc52A~12 f 1
2!~12 f 2

2!~12 f 3
2!1 f 1f 2A~12 f 3

2!

1 f 2f 3A~12 f 1
2!1 f 3f 1A~12 f 2

2!,

dc

du
5(

i 51

3
1

A~eui1t !~e2ui1t !

t coshui11

coshui1t
, i 51,2,3.

~3.13!

For the choice of the same sign ofx for BPS and anti-
BPS states, a typical field configurationc andx1 is shown
in Fig. 11 for 2mpR540 andt50.2, choosinga5pR. The
corresponding energy of the unit winding number configu
tion is shown in Fig. 12a as a function ofma. We find that
there is an absolute minimum atma54.75, which is identi-
cal to the noncompact case. We also find a very shallow lo
minimum at the centera5pR. This comes about because
the compactification. The general tendency of non-BPS w
is that they exert repulsion, as we encountered in the sin
field case. This repulsion produces a minimum at the cen
position.

As we decrease the compactification radiusR, the abso-
lute minimum gets shallower as shown in Fig. 12b for t
case of 2mpR520 with the same modulit50.2. Eventually
the absolute minimum aroundma54.75 disappears and w
FIG. 14. The energy of (c,x2) as a function ofma at t50.423 in the case of 2mpR540 ~a!, 2mpR520 ~b!, and 2mpR510 ~c!
(m51,g51).
0-9
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obtain only a single minimum at the centera5pR as shown
in Fig. 12c. Thus we find that the non-BPS bound state
walls persists for larger values of compactification radius
to 2mpR,16.92, and that it becomes unstable for sma
values of the radius.

Let us next examine the case with the opposite sign of
fieldsx for BPS and anti-BPS walls. A typical field configu
ration c and x2 is shown in Fig. 13 for 2mpR540 andt
50.423, choosinga5pR. For noncompact space, we foun
a local minimum of energies ata50. This still persists for
2mpR540, 2mpR520, and 2mpR510 as shown in Fig.
14. The absolute minimum always occurs at the centea
5pR in the case of the opposite sign of the fieldsx for BPS
and anti-BPS walls. Since the width of the BPS state is
order 1/m, our ansatz requiresmy to span a region of a few
B

k,

w

l.

n

04501
f
p
r

e

f

times 1/m for the fieldc to make a full 2p winding. There-
fore we should not trust our ansatz for too small values
radiusR.

ACKNOWLEDGMENTS

We thank Nobuhito Maru and Yutaka Sakamura for c
laboration in previous work where the idea of this wo
arose. This work was supported in part by a Grant-in-Aid
Scientific Research from the Ministry of Education, Cultu
Sports, Science and Technology, Japan, priority area~No.
707! ‘‘Supersymmetry and unified theory of elementary pa
ticles’’ and No. 13640269. R.S. is supported by the Jap
Society for the Promotion of Science for Young Scienti
~No. 6665!.
,’’

ett.

ys.

y
ngs
ics,

s.
s.

P.

n-

ity,
of
@1# N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett.
429, 263 ~1998!; I. Antoniadis, N. Arkani-Hamed, S. Di-
mopoulos, and G. Dvali,ibid. 436, 257 ~1998!.

@2# L. Randall and R. Sundrum, Phys. Rev. Lett.83, 3370~1999!;
83, 4690~1999!.

@3# S. Dimopoulos and H. Georgi, Nucl. Phys.B193, 150 ~1981!;
N. Sakai, Z. Phys. C11, 153 ~1981!; E. Witten, Nucl. Phys.
B188, 513 ~1981!; S. Dimopoulos, S. Raby, and F. Wilcze
Phys. Rev. D24, 1681~1981!.

@4# M. Cvetic, S. Griffies, and S. Rey, Nucl. Phys.B381, 301
~1992!.

@5# G. Dvali and M. Shifman, Phys. Lett. B396, 64 ~1997!; Nucl.
Phys.B504, 127 ~1997!.

@6# A. Kovner, M. Shifman, and A. Smilga, Phys. Rev. D56, 7978
~1997!; A. Smilga and A. I. Veselov, Phys. Rev. Lett.79, 4529
~1997!; V. Kaplunovsky, J. Sonnenschein, and S. Yankielo
icz, Nucl. Phys.B552, 209 ~1999!; B. de Carlos and J. M.
Moreno, Phys. Rev. Lett.83, 2120~1999!; J. D. Edelstein, M.
L. Trobo, F. A. Brito, and D. Bazeia, Phys. Rev. D57, 7561
~1998!.

@7# E. Witten and D. Olive, Phys. Lett.78B, 97 ~1978!.
@8# H. Oda, K. Ito, M. Naganuma, and N. Sakai, Phys. Lett. B471,

148~1999!; K. Ito, M. Naganuma, H. Oda, and N. Sakai, Nuc
Phys.B586, 231~2000!; Nucl. Phys. B~Proc. Suppl.! 101, 304
~2001!.

@9# M. A. Shifman and M. B. Voloshin, Phys. Rev. D57, 2590
~1998!; M. B. Voloshin, ibid. 57, 1266~1998!.

@10# S. V. Troitsky and M. B. Voloshin, Phys. Lett. B449, 17
~1999!; V. A. Gani and A. E. Kudryavtsev, ‘‘Non-BPS Domai
-

Wall Configurations in a Supersymmetric Model
hep-th/9912211.

@11# N. Maru, N. Sakai, Y. Sakamura, and R. Sugisaka, Phys. L
B 496, 98 ~2000!.

@12# N. Maru, N. Sakai, Y. Sakamura, and R. Sugisaka, Nucl. Ph
B616, 47 ~2001!; in String Thoery, edtied by Hajme Aoki and
Tsukasa Tada, AIP Conf. Proc. No. 607~AIP, Melville, NY,
2002!, pp. 209–215, hep-th/0109087; ‘‘SUSY Breaking b
Stable Non-BPS Configurations,’’ to appear in the Proceedi
of the Corfu Summer Institute on Elementary Particle Phys
Corfu, 2001, hep-th/0112244.

@13# L. Alvarez-Gaume´ and D. Z. Freedman, Commun. Math. Phy
91, 87 ~1983!; E. R. C. Abraham and P. K. Townsend, Phy
Lett. B 291, 85 ~1992!; 295, 225 ~1992!.

@14# J. P. Gauntlett, D. Tong, and P. K. Townsend, Phys. Rev. D63,
085001~2001!; J. P. Gauntlett, R. Portugues, D. Tong, and
K. Townsend, ibid. 63, 085002 ~2001!; J. P. Gauntlett, D.
Tong, and P. K. Townsend,ibid. 64, 025010~2001!; M. Na-
ganuma, M. Nitta, and N. Sakai, ‘‘BPS Lumps and Their I
tersections inN52 SUSY Nonlinear Sigma Models,’’ Gravi-
tation and Cosmology, special issue on quantum grav
unified models, and strings to mark 100th anniversary
Tomsk state Pedagogical University~to be published!,
hep-th/0108133.

@15# M. Naganuma, M. Nitta, and N. Sakai, Phys. Rev. D65,
045016~2002!.

@16# X. Hou, A. Losev, and M. Shifman, Phys. Rev. D61, 085005
~2000!.

@17# R. Hofmann and T. ter Veldhuis, Phys. Rev. D63, 025017
~2001!; Ralf Hofmann,ibid. 62, 065012~2000!.
0-10


