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Winding number and non-BPS bound states of walls in nonlinear sigma models
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Nonsupersymmetric multiwall configurations are generically unstable. It is proposed that stabilization in
compact space can be achieved by introducing a winding number into the model. A Bogomol'nyi-Prasad-
Sommerfield{BPS-like bound is studied for the energy of a configuration with nonvanishing winding num-
ber. The winding number is implemented in Af= 1 supersymmetric nonlinear sigma model with two chiral
scalar fields, and bound states of BPS and anti-BPS walls are found to exist in noncompact spaces. Even in the
compactified spac8!, this nontrivial bound state persists above a critical radius of the compact dimension.
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l. INTRODUCTION 1 1

£=—§(8Mw)2—§co§¢r. (1.1
Extended objects such as walls have attracted much atten-

tion recently, mainly because of the possibility of a “brane Because of the periodic field variabje= s+ 2, the topol-

world” scenario where our four-dimensional spacetime is re-ogy of the field space iS*. When the base space is compac-

alized on a wall embedded in a higher dimensional spacetimtified (y=y+ 27R) to S*X R®, we obtain the winding num-

[1,2]. SupersymmetrySUSY) is one of the most promising ber 7,(S') of the mappingy— . If we rewrite the same

ideas to solve the hierarchy problem in unified theof®Js  sine-Gordon model in terms of the nonperiodic variatple

Walls preserving half of the original SUS¥—6] are called =siny,

1/2 Bogomol'nyi-Prasad-SommerfieldBPS states [7].

2
Junctions preserving 1/4 of the SUSY have also been con- L=— 1 (9,9) _ E(l_q&z) (1.2
structed[8]. An interesting model with a two chiral scalar 2 1—¢>2 2

fields has also been found allowing BPS two-wall configu-., . difficult t ize the windi b ithouah th

rations[9] whose properties are studied with a certain ansatﬁt IS difficutt to recognize the winding number, afthough the
S S model should be the same as long as global properties like

[10]. By combining the brane-world scenario with SUSY, we T : .

have previously proposed a simple mechanism of SUS he W|??I|ng nulmbe( a(rje |r.reI(T\]fant.h For mstgng.e, the stp))ec—

breaking due to the coexistence of BPS and anti-BPS wall rum offluctuations Is identical for the zero winding number

111 We h SO | d h del which all Sector. A similar phenomenon occurs in the case of SUSY
[11]. We have also invented another model which allows jg|q theories. If we supersymmetrize the sine-Gordon model

non-BPS configuration to be absolutely stable because of the ¢,r dimensions. we need a complex scalar fighe i

winding numbef{12]. o _ __ +iyy . The bosonic part of the Lagrangian reads
Motivated by SUSY field theories in spacetime with di-

mensions higher than fo(ii3,14], walls and junctions have L=—d,4* I*y—|cosy|?

been studied in nonlinear sigma models with four super- _ 5 ) )
charges[15]. In order to preserve\'=1 SUSY in four di- =~ (0u9¥r) = (9,3)"— (cosyg cOShy)
mensions, only holomorphic field redefinitions are allowed. — (singr sinhy)2. (1.3

With the holomorphic field redefinitions, one can transform

SUSY field theories with minimal kinetic terniénear sigma  Since the real part is a periodic variablg= g+ 2, the
models into those with nonminimal kinetic termsonlinear  topology of the field space is now naturally identifiedSts
sigma models The transformations give a model equivalent X R. Therefore we can define the winding numbe(S*) of

to the original model as far as local properties in target spacthe mappingy— ¢r from the compact base spage=y

are relevant. However, new physical effects can arise if ther 27R. We have previously found an exact non-BPS solu-
global properties in the target space are different. A typication of two walls whose stability is guaranteed by the wind-
global property of that kind is the winding number in targeting number for this modgl12].

space[12,15. BPS walls in compactified base space have The purpose of this paper is to propose a general method
been considered, especially in the context of two-to construct non-BPS configurations by introducing the
dimensional SUSY theories, and the importance of windingvinding number and to study the properties of such non-BPS

number has also been noticed previoydlg,17. wall configurations, especially the possible non-BPS bound
A typical model admitting winding number is the sine- states of walls. We introduce the winding number by con-
Gordon model structing a nonlinear sigma model. This can be achieved by a

holomorphic field redefinition transforming the field variable

into an angular variable winding around a target space of
*Email address: nsakai@th.phys.titech.ac.jp nontrivial topology such aS$'. We obtain a non-BPS con-
TEmail address: sugisaka@th.phys.titech.ac.jp figuration consisting of a BPS and an anti-BPS configuration

0556-2821/2002/6@)/04501310)/$20.00 66 045010-1 ©2002 The American Physical Society



NORISUKE SAKAI AND RYO SUGISAKA PHYSICAL REVIEW D66, 045010(2002

by giving half the winding number to eadhnti-)BPS con- In the next section, a method is given to introduce the
figuration. For models with a single chiral scalar field with winding number by a holomorphic field redefinition, and a
only real parameters, we can establish a BPS-like bound3PS-like bound is derived for models with a single chiral
configurations with nonvanishing winding number consistingscalar field. In Sec. Ill, the winding number is introduced
of n (anti)BPS states have energies larger than or equal t#to & model with two chiral scalar fields. The energy of
the sum of energies of these (anti)BPS states. Since a Non-BPS multiwall configuratio_ns is studied _numeri_cally and
superposition of these (anti)BPS states becomes a solution & bound state of BPS and anti-BPS states is obtained.
when these BPS states are far apart, our bound implies that

no stable bound state can be formed in this class of modell. WINDING NUMBER IN SUSY NONLINEAR SIGMA

with a single chiral scalar field. MODELS

Although we do not find exact solutions with nonvanish-
ing winding number, we can still construct an ansatz of a
non-BPS configuration, which is a superposition of BPS and In order to illustrate our ideas in a simple context, we
anti-BPS solutions in terms of the periodic variable, to give aconsider three-dimensional domain walls in four-
nonvanishing winding number. This ansatz is tested in alimensional field theories with four supercharges. A general
model with a single chiral scalar field and gives a repulsioWess-Zumino model with an arbitrary number of chiral su-
between BPS and anti-BPS walls and produces no bounperfields ®', a superpotentialV, and a Kaler potential
state in accordance with our BPS-like bound. In contrast, &(®',®*!) is given by
similar ansatz for configurations without winding number : : :
gives an attraction and shows annihilation into the ordinary L=K(P',D*)| jzge+ [ WMD) g2+ H.c]. 2.0
vacuum.

The model with two chiral scalar fields admits BPS two- We shall denote the scalar component of the superfield
wall configurations with a moduli parameter corresponding®'(x, 6,6) as ¢'(x). Let us suppose that we have a wall
to the separation of two walls within the BPS stf@ This  configuration which depends only od=y. If the following
internal structure of the BPS state offers a new possibility oBPS equation is satisfied, two out of the four supercharges
forming a bound state of BPS and anti-BPS states, whosare conservef4—6|:
stability is guaranteed by the nonvanishing winding number.

A. Introducing the winding number

We construct an ansatz of four walls comprising two BPS ad W (%)
walls and another two anti-BPS walls by superposing these p & i (2.2
solutions in terms of the periodic variable. We find that the y d

BPS-like bound allows the possibility of configurations
whose energy is lower than the sum of BPS and anti-BP§Ve call such a configuration a BPS wall. The other two
states. We evaluate the energy density of the configuration &!percharges are conserved if the similar equation with op-
a function of the moduli and of the distance between BPOsite sign is satisfied:

and anti-BPS states. We find an interesting nontrivial behav-

ior of the energy density. We first study configurations in T ii* IW* (d*)
noncompact space in order to find a bound state of BPS and W: - W
anti-BPS states. For one choice of intermediate vacuum, we
find an absolute minimum of energy which is lower than the
sum of the BPS and anti-BPS states. Although we use
variational ansatz which is guaranteed to be a solution only" . .
in the limit of infinite separation, the mere existence of the 't_h two vacua at Ie_ast. T_h‘? 5|mplest_ model has a S|_ngle
configurations whose energies are lower than the sum of thghiral scalar fieldb with a minimal kinetic term and a cubic
BPS and anti-BPS states is sufficient to conclude that th&UPerpotentialy,
bound state exists. The distance between BPS and anti-BPS

(2.3

e call such a configuration an anti-BPS wall. Since these
alls connect two supersymmetric vacua, we need models

states and the moduli of these states are approximately evalu- L=®"D| o+ ﬂz(b_gq)g YHC

ated using our ansatz. For another choice of intermediate 0%0 g 3 52 o
vacuum, we find a local minimum at vanishing separation

between BPS and anti-BPS states. This suggests an unstable L dp* g 2 2 fermi 5
bound state at the coincident limit of BPS and anti-BPS T Xy XM E_gd’ +fermions. (2.4

states. For compact space, we always find a minimum of

energy when the BPS and anti-BPS states are equally spacerhe BPS Eq(2.2) and anti-BPS Eq(2.3) have the solutions
This is due to a tendency to repel each other, as indicated by

the BPS-like bound. For the same reason, we can expect that m

the bound state that we find in the other choice of interme- Dwan(y)=—tanfm(y—yo)], (2.5
diate vacuum may disappear when the radius of the compact 9
dimension is too small. In fact, we find that the absolute 0
minimum is gradually raised as the radius decreases, and _ v

disappears below a critical radius. P antivan(Y) = gtank[m(y Yol 2.6
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representing walls located gt andy,, respectively. For a v
compact spacg=y+27wR, we have also found an exact
solution of the wall and antiwall configuration which breaks
supersymmetry complete[yL1]:

mkﬁﬁ(ﬁ

9Vi+k2 | 1K

¢(wal|—antiwa|l)(Y) =

my,k) , (2.7

T

/ Y2 y,+ 2R Y
2/

where sn(,k) is the Jacobi elliptic function, k=<1, and
R= \/5\/1+ sz(k)/(ﬂ-m), whereK (k) is the complete el- FIG. 1. The profile of the field configuration aof with unit
liptic integral. This non-BPS solution corresponds to a wallwinding number. The dotted lings= — 7/2 andy=37/2 are iden-
located aty=0 and an antiwall ay=R. The small fluc- fified.
tuations around this background exhibit a tachyon corre-
sponding to wall-antiwall annihilation instabilifyL1]. (2.12), there is a possibility of connecting these two wall

A promising idea for stabilizing the non-BPS configura- solutions located at,<y,. Such a field configuration should
tion of two walls is to introduce a topological quantum num- have winding number 1.
ber, typically a winding number, into the model. We give a In fact we have found previously that a similar model
topology ofS! to field space so that we can have a notion ofwith the minimal kinetic term provides the same BPS equa-
winding from a compactified base space which is &oTo  tion (2.10 and that there is an exact solution for the non-
achieve that goal, we make a holomorphic redefinition of theBPS configuration of two walls for compactified spage
field ¢ into a periodic onay: [12]. The configuration was found to wind around the field

spaceys once and is topologically stabfe.

_m . In our model with the periodic variabl®.9) we have an
P(x)= asml//(x), exact solution for compactified space:
— m — m ky2 V2
CI)(X, 0, ) = —Sln\lf(x, 0, 0) . (28) lﬂ(wa“_amiwan)(y) =arcsin — S my,k s
g g Ji+k? |\ V1+K?

(2.13

In terms of the periodic variablg, the modek2.4) becomes

obtained by transforming the non-BPS soluti@?) to our

m? m3 1
£=—Zsin\If’r sinw + —|sin¥— =sir*¥ | +H.c. periodic variabley. Since 6<k\2/\/1+k?<1 for 0<k<1,
9 0262 3 62 the configuration has no winding number and represents the
m2 a2 |m? 2 wall-antiwall configuration as in our original model without
=— —|COSYy—m| — ‘—Cogl/l +fermions. (2.9  periodic variablg11]. One also finds that the small fluctua-
g IX g tion around the background has exactly the same spectrum,

. . including the tachyon instability. This is consistent with the
The field space now acquires the topologyS3&R. Then  fact that the ordinary vacuum is the minimum energy con-

the SUSY vacua occur gt=m(n+ 1/2) with the periodicity  figyration in the vanishing winding number sector.
Y=+ 2. The BPS equatiof2.2) becomes

B. BPS-like bound for winding field configuration

d—df =COSi. (2.10

dy We are interested in the field configuration with a nonva-

nishing winding number. Let us consider a BPS-like bound
The BPS solution(2.5) is mapped into a solution of this for the energy of the configuration with a nonvanishing
transformed BPS Ed2.10: winding number. Let us first consider the mod2l9) as the

simplest model for illustration. If there is a field configura-

PepsfY) =arcsiftanfm(y —yo) 1} (2.1  tion with unit winding numbers should rotate by z asy

increases by ZR. The noncompact space is obtained by the
connecting the SUSY vacuunf=—m/2 aty=—o to ¢  limit R—o. Let us call the poiny, wherey=— 7/2 andy,
=m/2 aty=c. The solution of the anti-BPS equation con- where ¢y=7/2 and assumeg,<y, as illustrated in Fig. 1.
necting the SUSY vacuumi= 7/2 aty= —cc to 4=3m/2 at  The energy of a configuration with one winding number is
y=o is given by given in one periodicity domain by

Y(anispsfY) = arcsiftanfm(y —yo) [} + . (2.12 N o _ _
Since the 1/2 BPS solution is real, we can reinterpret the inverse

Since the value of the fielgt at the right end of the BPS wall of the Kéhler metricK'I™ as a part of the derivative of a superpo-
(2.11) is the same as at the left end of the anti-BPS walltential K'i* 9W/a¢*i= dAId¢*], as noted if15].
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v Y
4 4
3 3 FIG. 2. The profile ofy with
2 2 unit winding number; the superpo-
sition of the BPS wall and the
! / anti-BPS wall atma=10 (a) and
o 5 10 s U Tio -5 5 10 Y ma=0 (b).
f1 -1
(a) ma=10 (b) ma=0
yi+27R  [m? 2 Im? 2 tions consisting oh (anti- BPS states in one periodicity do-
E:f dy ? COS!//W + ECOSZLﬂ main Osy<2wR have energy larger than or equal to the
1 sum of these BPS states.
y2 | |m gy m? 2 md _
= dy| |—cosy—— —coszzp +— —|siny C. Repulsion between BPS and anti-BPS walls
PR A g* dy _ _ . _
Since we cannot find exact solutions in the sector with
1 y1+27R m ay m? 2 nonvanishing winding number, we shall use an approximate
- §Sln3¢ + f dy ECOS¢W+ Ecos?zﬁ evaluation of the possible configurations inspired by the BPS
y2 (2.11) and anti-BPS(2.12 solutions. This is at least suffi-
m? d 1 cient to give an upper bound of the energy of the possible
-— _< siny— —sin31,[;) minimum energy solution from the viewpoint of a variational
dy 3 approach.
3 Yo Let us consider a superposition of the BPS wall solution
- mr .. E in (2.11) centered ay=0 and the anti-BPS solutiof2.12) cen-
= — sinys sin’yr
g 3 tered aty=a,
Y1
m? 1 yiramR Y(y)=arcsiftanhmy)]+arcsiftanfm(y—a)]} + T
- —z(simp——sinw” = 2Egps, (2.14 y y y >
9 3 Yo (2.15

) ) . connecting the SUSY vacuunf=— /2 aty=—o to ¢
whereEgpsis the energy of the single BPS or anti-BPS wall. —3,/2 aty=c0, and having unit winding number. Although
Therefore any configuration with unit winding number hasis js not a static solution of the equation of motion for finite

energy larger than or equal to the sum of the energies of 8gparatiors, it reduces to a solution in the limit— . De-
BPS wall and an anti-BPS wall. Since this superposition ofining a dimensionless coordinate

the BPS and anti-BPS states becomes a solution of the equa-

tion of motion as their separation goes to infinity, we find u=my, u;=ma, (2.16
that the BPS state and the anti-BPS state in the unit winding

number sector always repel each other when they are suffthe energy of this configuration is found to be

ciently far apart at least. Whether there is any local minimum

2 2 2 2

for finite separation or not is the remaining question which E_ * q A I LI
we will address in the next subsection. I y 52' cosy ay g cos'y
This BPS-like bound can also be generalized to other
models of a single chiral scalar field using an arbitrary su- m? (= tantu tanh(u—u,)\?
perpotential with real parameters. This may be achieved if :?Jw coshu—uy) coshu
the parameters of the model can be made real by phase ro-
tations of the fields. Then we can assume that the field con- 1 1 2
figuration is real. Let us suppose that there are two vacua at *lcoshu T coshiu—u,)

1 and i, of the periodic variabley= ¢+ 2. Without loss

of generality we can assumé/(;) <W(i,). If there is a tanhu tanh(u—u,)\*
field configuration with a single winding number which takes + coshu—uy,) + coshu :
the valuey, aty, andy, aty,, we can apply a BPS bound

for the intervaly,<y<y, and an anti-BPS bound for the One should note that the fie(@.15 as well as its derivative
interval y,<y<y;+2#R as in Eq.(2.14). Thus we obtain are nonsingular in the entire region pfOn the other hand,
that the energy of the field configuration with a single wind-the energy density in the integrand of £8.17) has contri-
ing number is bounded by Bps=2[W(ir,) —W()].  butions from the kinetic terntfirst term and the potential
Similarly, we can easily find that winding field configura- term (second terry both of which have powers of cags

(2.17
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E- 2E 5

a

5 7.5

FIG. 3. The energy ofy as a function of the wall separati@n
(m=1g=1).

vanishing at vacua. As a consequence, the energy density oeE

the two-wall configuration in Eq(2.17 has a zero ay
=a/2 for any values ofa=0 and exhibits two separated
peaks for two walls. This is true even fa=0 where the

field ¢ itself shows no sharp separation of two walls as

shown in Fig. 2b).

A typical field configuration atu,=ma=10 in Fig. 2a
shows winding once to form two walls. Even at the coin-
cident limit a—0 of two walls, the field configuration is

PHYSICAL REVIEW D 66, 045010 (2002

md = tantu
Eno winding = o7 ,xdu costu—uy)
tanfu—uy)\?( 1 1 2
~ coshu coshu coshu—uy)
tantu tanfu—u,)\*
_tanh(u—ua) . (219
coshu—uy) coshu

A typical field configuration au,=10 in Fig. 4a shows no
winding to be compared with Fig. 2a. At the coincident limit
a—0 of two walls, the fieldy becomes constant as shown in
Fig. 4b and reduces to the ordinary vacuuhs — 7/2 in
contrast to the unit winding number case in Fig. 2b. In Fig. 5
show the energy of the two-wall configuration in the
vanishing winding number sector as a function of the wall
separatiorna. It reduces to the sum of the BPS energies of
two walls ata— *=o and vanishes at the coincident point
a=0. This clearly shows that the wall-antiwall configuration
in the zero winding number sector is unstable and annihilates
into the vacuum.

IIl. WINDING NUMBER IN A MODEL WITH TWO
FIELDS

nontrivial as shown in Fig. 2b. The energy as a function of

the wall separatior is shown in Fig. 3, where the param-
eters are set tm=1,g=1. We see that the energy is always

A. Model with two fields
In order to explore the nontrivial behavior of the winding

larger than the sum of the isolated wall and antiwall andhymber configuration, we consider the next simplest possi-

reduces to the sum at—« in accordance with our BPS-like

bility, models with two chiral scalar fields. It has been found

bound. Therefore we find that a BPS wall and an anti-BPShat the model with minimal kinetic terms for chiral scalar
wall repel each other and have no stable bound state in thigelds ® and X with the following superpotentialy has an

unit winding number sector.

integral of motion[9]:

To examine how well our ansatz carries the correct behav-

ior of the lowest energy configuration, we also compute the
energy of the corresponding ansatz in the vanishing winding

number sector:

Uno Windingfy) =arcsifftanhmy)]|

—arcsiftanfm(y—a)]}— g

g

3

9¢x%

3_
® 4

m?2
W(<I>,X)=E<D— m,g>0. (3.2

This model is the simplest modification of our model in Eq.
(2.4) in the previous section to allow four degenerate SUSY
vacua at ¢,x)=(=m/g,0),(0+2m/g). There are BPS
wall solutions connecting the vacuum-(/g,0) to (O,
+2m/g) and solutions (Gt 2m/g) to (m/g,0). Since both

of them turn out to conserve the same supercharge, the
smooth connection of these wall solutions located far apart

(218 should be a solution of the same BPS equation. A remarkable
property of this model is that it admits a BPS solution of two
walls connecting é,x)=(—m/g,0) to (m/g,0):
‘Vm winding wm winding

4 4

3 3 FIG. 4. The profile of

2 2 ¥no winding Without winding num-

ber; the superposition of the BPS
! ! wall and the anti-BPS wall aha
5 3 1 15 U o 5 5 1o U =10 (a) andma=0 (b).
-1 K -1
(a) ma=10 (b) ma=0
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E no winding WnonBPS
2.2
2
A
L t,
2
A
4
. . . .5 a 0 u
FIG. 5. The energy ofn, winging @S @ function of the wall sepa- j= n u, >
ratona (m=1g9=1). ewTaa_ i
m sinhu FIG. 6. The profile of the field configuration @f,.,.gps
p=—f(u), f(u)=_——-,
g coshu+t
2 g
m i cosy—-= cosy* — X 2
=+ — = .
X=* h(w), h(W=2v ot (3.2
. . . . . 1% 1
where O<t is a moduli parametd9,10]. This configuration (9_)(: - ESin J*x*, u=my. (3.5
u

can be interpreted as a smooth connection of the above two
BPS walls connecting between-(/g,0) and (0 2m/g) ) )
and between (& 2m/g) to (m/g,0). They are centered at One can obtain from Eq(3.2) a BPS two-wall solution
y=0. If the moduli parametet is larger than 1, these two Which connects ¢,x)=(-7/2,0) aty=-= to (.x)
walls are separated by a distanget where coshfiy=t.  — (7/2.0) aty=c=:

The case with &t<<1 corresponds to two walls compressed
into each other so that the walls merge together completely.

3.6
We introduce the concept of winding number by making a 39

. m
Ygps=arcsinf(u)], xgps= igh(u)

holomorphic change of variabl.8) from ¢ to a periodic
one = arcsin@¢/m). The bosonic part of our model with
the periodic variable is then given by

m2 ﬁlﬂ 2 (9)( 2 m2 g 2
Ebosonic: - ? Coswﬂ)(_m — ﬁ)(_m - ’ECOS’)I;&_ ZXZ
m 2
—’—gxsinw . (3.3
The vacua of this model are at
a
(Izb!X): _+n’7T,O y
2
2m 2m
(nw,—), (nﬂ',——), (3_4)
9 g

with integer—o<n<~. The BPS equations are given by

+
x nonBPS x nonBPS

(@ (d)

where the functiong(u),h(u) are defined in Eq(3.2). The

+ of y* corresponds to the sign of the vacuug, ¢) = (0,
+2m/g) in the intermediate region. Another two-wall con-
figuration connecting ¢, x) = (m/2,0) aty=—o to (¢,x)
=(37/2,0) aty== is given as a solution of the anti-BPS
equation preserving the opposite combination of super-
charges:

. m
Xanti-BPS™ igh(u)-

(3.7)

Yani-gps=arcsin f(u) ]+,

These solutions are centeredyat 0 and have a moduti

We can construct an ansatz for the configuration with unit
winding number by superposing the BPS two-wall solution
with moduli t; centered ay=0 and the anti-BPS two-wall
solution with the modult, centered ay=a:

FIG. 7. The profile of the field

- - =+
™ u configuration ofy,on.gps:
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E - 2E g

a

i - w “10 s 5 10 a
FIG. 8. The energy of the field configuration of,x ") as a FIG. 10. The energy of the field configuration af,§ ") as a
function ofa att=0.2 (m=1g=1). function ofa att=0.423 m=1g=1).
sinhu sinhu—u,) As in the single field model, we assume that the periodic
— 1 — + H . .
Ynon-Bps= Arcsi coshu+t, arcsi —cosl(u—ua)ﬂz field ¢ takes values- #/2 aty, and =/2 aty,. We find

. y2 ‘m dyp m? g |2
Z E:f dy| |—cosyy—— —coSy+ = x?
T2 Y1 diF l'/jdy g v ax
dy m 2 dwW(y,
. _2m \/ ty +\/ t; +d—X+EXsin¢ +%X)}
Xnon-BPS™ " coshu+t,;~ Vcosu—u,)+t,/’ y y
(3.8 yi+27R  [|m P 2
_ L +J' ' dy| —cosl//—¢+—co§¢_ 9)(2
where the signt for the field y~ indicates the sameX) or Y2 g ay 9 4
opposite ) sign of the vacuum in the intermediate region 2
aroundy=0 and around/=a. A typical field configuration + d_X_ T)(sin _ M ) (3.10
(,x™) is illustrated in Figs. 6 and 7a. We have shown the dy 2 dy

distancefizarccosh(i)/m between walls within the BPS
state {(=1) and the anti-BPS staté=¢2). For comparison,
the field configuration #,y ) for the vacuum ¢,x)=(0,
—2m/g) in the intermediate region is illustrated in Figs. 6
and 7b.

In the case of the single field model, one can specify the
value of the superpotential in terms of the value of the field
. Combined with the requirement of nonvanishing winding
number and the continuity of the real functigify), we are
sure that the superpotential has to reach the vacuum value
) _ W(=ml2) before returning back to the original value
B. BPS-like bound for two-field model W(¢=—7/2) as dictated by the periodicity of the superpo-

Let us first examine what sort of BPS-like bound can betential in our model. This is the origin of the BPS-like bound

obtained in the case of two fields. The energy in the onefor the single field model. In the case of two fields, however,

periodicity domain is given by the above bound reads
oGy <oy [ = a0 w0 = x|
E= — —| +|== E=2|W ==, -W =—,
fo dy g coswdy dy Py2)=5.x(y2) Py =—5x(y1)
2 2 2 2m® m 2m®* m
ote- 34| 2o A5l B
+ J cosy 72X =z xsing| | (3.9 372X Y2 392 T2 X Y1
E - 2E m
Ltot =2Egps— E[XZ(Y2)+X2(Y1)]- (3.1
0 0.2 ofa 17 "2
TABLE |. Fractional difference E5— E3)/E; between energies
in compact space in approximations with five walls and three
walls E; for 2m7R=10,20,40. Difference is largest for antiwall
placed at the center of periodicigy= 7R, and smallest at coinci-
dent limita=0,27R.
2m#wR 10 20 40
a=0,27R 9.18x10°° 4.12x10°° <10°°
FIG. 9. The energy of ,x") as a function oft;—t, at (t; a=mR 1.03x 102 6.81x10°° 3.09x10°°

+1,)/2=0.2 andma=4.73 (m=1g=1).
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v Xt
8 0.7
s 0

0/25
4

10 20 30 20 u

2 -0.25

0.5

10 20 30 0 u
~0.75

FIG. 11. The profile of the field configuration off(x*) in three-wall approximation atrfBrR=40 andt=0.2 (m=1g=1).

Nonvanishingy(y;) and x(y») make this bound lower than field configurations inspired by physical considerations, this
twice the BPS energy. In the case of two fields, it is notfact clearly shows that the BPS and anti-BPS states infinitely
guaranteed for two fields to take the particular value specifar apart is not the lowest energy state in the nonvanishing
fied by the vacuum at the same time. Consequently, the swyinding number sector.

perpotential need not reach the value at the vacuum before (2) Among these configurations, we find the minimum
returning back to its original value. Since we have just cho-energy configuration with a separatiar4.73m of BPS

sen particular pointg, ,y, to divide the integration region in  gnd anti-BPS states and the modui0.200 which is shown
order to evaluate the BPS or anti-BPS bound, it is possiblg, Fig. 8. Thus we find an approximate evaluation of the
that we can have better bounds by choosing other points qfinimum energy configuration for the unit winding number
division. However, it does not seem to be possible to Choosgector.

such a point in general situations. Therefore we just conclude (3) We have also examined the energy as a function of the

that the energy of the winding configuration need not be,. N .
larger than the sum of the BPS and anti-BPS states. Thi%'fferencetl t, between the moduli parameters of the BPS

result suggests that there is a possibility for a non-BP c}:;ertll ?r?gtttr;1eeacnotlrﬁPuSraSt}g:]QSShiS:\?evgntmeFrﬁﬁigrﬁ:}rihgr\:\ésr
bound state of walls in the case of the two-wall model. for tlitz 9 9y
. ) (4) Therefore we find that there exists a non-BPS bound
C. Non-BPS multiwalls in the noncompact space state of walls whose approximate configuration is given by
Here we present the ener.9 of the non-BPS configu- two BPS and anti-BPS walls with moduli paramete+t,
ration of four walls with unit winding numbe3.8). To avoid ~ ~0.200 which are separated by=4.73m.
too many parameters, we will use the same moduli param- For the case with the opposite sign of the fiejd®r BPS
eters for both BPS and anti-BPS statgsst,=t, except as and anti-BPS walls, we show the energy as a function of
stated otherwise. separationa between BPS and anti-BPS walls for fixed
For the case of™ with the same sign of the fielgt for =~ modulit~0.423 in Fig. 10. A typical field configuration can
BPS and anti-BPS walls, we show the energy as a function dfe obtained by letting;=t, in Figs. 6 and 7b. We observe
separationa between BPS and anti-BPS walls for fixed the following.
moduli t in Fig. 8. A typical field configuration can be ob- (1) We find that energy is always higher than the sum of
tained by lettingt;=t, in Figs. 6 and 7a. We observe the the BPS and anti-BPS states.
following. (2) There exists a local minimum of energy at zero sepa-
(1) There exist configurations which have energies lowerationa=0 between BPS and anti-BPS states for the moduli
than the sum of BPS and anti-BPS states, in contrast to thgarametet<<3.705. The lowest value of this local minimum
single field case. Although we have only a limited ansatz ofoccurs at the moduli~0.423 which is shown in Fig. 10.

E- 2EBPS E - 2E g E- ZEBPS

N s o ®

o
-~
o
-~

[

© 0 &5 © © o o

RN

2 q [3 B 10
o \/rr 20 W 40 W 70 ma

(a) 2mntR=40 (b) 2mnR=20 (c)2m7nR=10

FIG. 12. The energy of#,x*) as a function ofna att=0.2 in the case of @7R=40 (a), 2m7R=20 (b), and 2Zn7R=10 (c) (M
=1g9=1).
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10 20 30 20 u

FIG. 13. The profile of the field configuration ofs(x ) in three-wall approximation at@wR=40 andt=0.423.

D. Non-BPS multiwalls in compactified space sity in Eq.(3.9) can be evaluated in the three-wall approxi-

It is interesting to examine if the above non-BPS boundTation_ by “Sing_fi:f(“i)*hi:h(ui)'i =123, andu
state of walls persists when the space is compactifieglon = U:U2=U—Ug,Us=U—2m7R:
since one expects a repulsion from the other walls located at

27R, which is the periodicity of the base spage=y sing=—f1 (1~ 5)(1—13) — fo(1- 5) (1~ )
+27R. JaA=t3)(1=1%)
When the space is compactified, the BPS states are placed ~ V(1= (1= 1)+ faffs,
at y=2n=7R and the anti-BPS walls at=2nwR+a peri-
odically. Then we have the ansatz cosy=—\(1— 1) (1— ) (1—F3)+f fo /(13
” _ +1,of V(1= ) +faf1\(1—F3),
Unoneps= 2, {arcsitif(u—2nug)]
d 1 t coshu; +1
_ d_‘”=2 . =123
+arcsiff(u—uz—2nug) ]+ 7} — =, u =1 J(eti+t)(e ti+t) coshuj+t
2 (3.13

N S [m For the choice of the same sign gffor BPS and anti-
Xnon-BPS:n:E_w E[h(u—2nu0)ih(u—ua—2nuo)] ’ BPS states, a typical field configuratignand y * is shown
(3.1  inFig. 11 for 2n7R=40 andt=0.2, choosinga=7R. The
corresponding energy of the unit winding number configura-
whereu=my,u,=ma, andup=m=R. tion is shown in Fig. 12a as a function ofa. We find that
In the one-periodicity domaia— 7R<y<a+aR, only  there is an absolute minimum ata=4.75, which is identi-
nearby walls are important. Three-wallplaced aty  cal to the noncompact case. We also find a very shallow local
=0,a,27R) and five-wall (placed at y=a—2#R,  minimum at the centea= 7R. This comes about because of
0,a,27wR,a+27R) approximations of the energy in the in- the compactification. The general tendency of non-BPS walls
terval a— mR<y<a+ wR are compared in the case of the is that they exert repulsion, as we encountered in the single
moduli parametet=0. We find excellent agreement be- field case. This repulsion produces a minimum at the central
tween three-wall and five-wall approximations. We show theposition.
fractional difference E5—E3)/E; between the energies in As we decrease the compactification radRjsthe abso-
compact space in approximations with five wall§ and  lute minimum gets shallower as shown in Fig. 12b for the
three wallsE; in Table I. Therefore we choose to use the case of 2nmR= 20 with the same moduti=0.2. Eventually
three-wall approximation in the following. The energy den-the absolute minimum arounda=4.75 disappears and we

E-2E g E - 2E g5 E- 2E

0.6 0.6 0.6
0.5 0.5 0.5
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2

0.1 0.1 0.1

0 10 20 30 qo ma o S 10 15 7o ma ¢ ma

2 4 6 8 10

(a) 2mnR=40 (b) 2mnR=20 (c) 2mnR=10

FIG. 14. The energy of, x ) as a function ofma att=0.423 in the case of@wR=40 (a), 2Zm7R=20 (b), and 2nmR=10 (¢)
(m=1g=1).
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obtain only a single minimum at the center 7R as shown times 1m for the field ¢ to make a full 2r winding. There-
in Fig. 12c. Thus we find that the non-BPS bound state ofore we should not trust our ansatz for too small values of
walls persists for larger values of compactification radius upadiusR.
to 2m7R<16.92, and that it becomes unstable for smaller
values of the radius.

Let us next examine the case with the opposite sign of the
fields y for BPS and anti-BPS walls. A typical field configu-  We thank Nobuhito Maru and Yutaka Sakamura for col-
ration ¢ and y~ is shown in Fig. 13 for thwR=40 andt laboration in previous work where the idea of this work
=0.423, choosing= 7R. For noncompact space, we found arose. This work was supported in part by a Grant-in-Aid for
a local minimum of energies @=0. This still persists for Scientific Research from the Ministry of Education, Culture,
2m7R=40, 2m7R=20, and 2n7R=10 as shown in Fig. Sports, Science and Technology, Japan, priority dhNa
14. The absolute minimum always occurs at the ceater 707) “Supersymmetry and unified theory of elementary par-
=mRin the case of the opposite sign of the fiejdéor BPS ticles” and No. 13640269. R.S. is supported by the Japan
and anti-BPS walls. Since the width of the BPS state is ofSociety for the Promotion of Science for Young Scientists
order 1, our ansatz requiresy to span a region of a few (No. 6665.
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